Skip to content

Visit our sister organization:

  • Home
  • Insights
  • Resources
    • Learning Engineering Hub
      • Introduction to Learning Engineering
      • Learning Engineering Events
      • Resources & FAQs
    • Guides
    • Books
  • About
    • Team
    • History
    • Services
    • Press Room
    • Our Openings
  • Contact
Menu
  • Home
  • Insights
  • Resources
    • Learning Engineering Hub
      • Introduction to Learning Engineering
      • Learning Engineering Events
      • Resources & FAQs
    • Guides
    • Books
  • About
    • Team
    • History
    • Services
    • Press Room
    • Our Openings
  • Contact

Introduction to Learning Engineering

Learning engineering is the process and practice that applies the learning sciences using human-centered engineering design methodologies and data-informed decision making to support learners and their development.

This learning engineering approach is critical because the current process to test and establish the efficacy of new ideas is too long and too expensive, leaving teachers and administrators with neither proven tools nor the research needed to make informed pedagogical decisions.

In this video series, you will learn about  how you can apply a learning engineering perspective to your work.

Overview of Learning Engineering Kumar Garg

In this video, Kumar Garg, managing director at Schmidt Futures, will explain what learning engineering is and why it’s so important to safely collect data, analyze data, and iterate based on what you learn. As Garg notes, learning engineering requires us to humbly admit that we don’t know everything there is to know about how students learn. But at the same time, he argues that educators can do a lot to learn about learning! When individuals think from a learning engineering perspective, you’re constantly planning systematic ways to test your own assumptions about how your tool works and then making changes based on what you learn.

See also:

  • Kumar Garg’s biography
  • Schmidt Futures

The Practice of Learning Engineering Ryan Baker

In this video, Ryan Baker, professor of education and computer science at the University of Pennsylvania and director of the Penn Center for Learning Analytics, will explain some of the common methods learning engineers use in practice. This includes a deeper look into the types of questions that can be asked and answered using educational data. He’ll also give an overview of some of the ways this data is collected and analysed and some of the terms commonly used in learning engineering. He also explains the differences between learning engineering and other related fields such as learning science and educational technology.

Mentioned in the video:
  • High-Leverage Opportunities for Learning Engineering
  • Learning Engineering Recommendations
  • Big Data and Education Course on edX
  • Pittsburg Science of Learning Center Data Shop at CMU
  • ASSISTments
  • BlackBox Data Collection Project
  • MORF Framework for massive open online course data
  • Riiid EdNet
See also:
  • Ryan Baker’s profile
  • Penn Center for Learning Analytics
  • Baker EDM Lab on Twitter
  • Baker EDM Lab on Facebook

The Challenges of Learning Engineering Diane Litman

In this video, Diane Litman highlights some of the challenges that are common to encounter in learning engineering. She talks about concerns for student privacy, the ethics of good research design, and considerations of bias in machine learning algorithms. Diane is a computer science professor, a senior scientist with the Learning Research and Development Center, and faculty of the Intelligent Systems Program all at the University of Pittsburgh.

Mentioned in the video:
  • FERPA (Family Educational Rights and Privacy Act)
  • NSF (National Science Foundation)
  • IES (Institute of Education Sciences)
  • NIH (National Institutes of Health)
See also:
  • Diane Litman’s profile
  • Social-Behavioral-Educational (SBE) Foundations Course through CITI Program
  • A Fairness Evaluation of Automated Methods for Scoring Text Evidence Usage in Writing

Case Study: Talking Points Heejae Lim

In this video, Heejae Lim, Talking Points’ founder and CEO, explains how the company thinks about both enabling outside researchers to conduct their research more easily using their platform and using their own data internally to better understand how parent-teacher-administrator communications affect and reflect student learning. Talking Points is a platform that allows for student families, teachers, and administrators to communicate with each other in their own native languages through human and AI-enabled two-way translation.

See also:
  • Talking Points

Case Study: The Feedback Prize Aigner Picou

In this video, Aigner Picou gives an overview of an exciting new competition in learning engineering called The Feedback Prize. The Feedback Prize is a joint project of The Learning Agency Lab and Georgia State University, created to spur the development of open-source algorithms to better provide automated feedback on student writing. Aigner, a program director at The Learning Agency Lab, explains the datasets and the goals of the competition to improve feedback on argumentative writing and to improve feedback for English language learners on their writing.

See also:
  • The Learning Agency Lab
  • Georgia State University
  • The Feedback Prize

Case Study: UpGrade, a Carnegie Learning A/B Testing Tool April Murphy

In this video, April Murphy, a learning engineer at Carnegie Learning, gives an overview of Carnegie Learning’s tool, UpGrade. UpGrade is an open-source web-based platform for A/B testing in education. UpGrade allows researchers to compare the efficacy of different learning resources such as videos, tests, texts, algorithms, and more, all with the goal of better understanding – and thus improving – student learning.

See also:
  • UpGrade platform
  • Carnegie Learning
© Copyright 2022. The Learning Agency. All rights Reserved.
Twitter Facebook Linkedin Youtube